Skip to main content

Subsumption Architecture - Introduction II

The last post left off with me wondering why the Trapped behavior needed to be called even when a higher priority behavior was active. Here is why:

Remember I ported the code from the Command Module (CM) version to the Windows on the Fit PC Slim? In Windows there is a clock and in the CM there isn't. In the newer version I can setup a timeout by taking the current clock time and adding a delay. Then when the clock exceeds the timeout the timer has expired. For Trapped this meant the robot had not moved for over 10 seconds, despite other activities trying to make it move.

In the CM version, with no clock the Trapped needed to update the "clock" value to see if it exceeded the timeout value.

I'd say this falls under checking your assumptions. In the CM the assumption was that no clock existed so Trapped had to maintain its own. I didn't catch that the assumption was no longer valid in the Windows version.

I've been re-reading a lot of the papers on subsumption and the Jones book Robot Programming. I find that my implementation isn't really subsumption as it was originally presented by Rodney Brooks. Brooks is credited with the concept of programming robots by behaviors. His technique for implementing behaviors was subsumption.

My implementation is more in line with Jones, and also derives from David Anderson. David has an article about two of his robots, SR04 and jBot, which are accessible from the Dallas Personal Robotic Group .

I continue the discussion in a later post. I also want to take some time to reabsorb the subsumption and behavior programming concepts so I can elaborate on them.

Popular posts from this blog

Cold Turkey on Linux

I bit the bullet a few weeks ago with Linux. I was getting ready to go to WPI for the SRR competition and decided to go cold turkey on my laptop. I put in a SSD and loaded Zorin Linux. It us recommended as a substitute for Win XP. One reason I liked it is the rolling upgrades instead of the Ubuntu staged upgrades.

There was still frustration. The WiFi did not work so I used the software updater to install the drivers it found from Broadcom. The OS would not boot after that. I reinstalled just before leaving and took the memory stick with the Zorin Live distro with me figuring I could always reload from it. I was impressed by the quickness of the installation. That encouraged me since if I messed up the laptop I could always quickly reinstall. I also had my iPad so accessing email, FB, and Twitter (I did a lot of tweeting with photos) were always available. 
I kept busy so it was not until Friday night up in VT to visit my sister that I had time to do much with the laptop. I cannot reca…

The Autonomous Roboticist

Since September 2016 I've been competing in the NASA Space Robotics Centennial Challenge (SRC). The challenge had a qualifying period and the final competition. I was one of the twenty teams from an international pool who qualified for the final competition. In mid-June the competitors ran their entries on a simulation in the cloud. The last few days, June 28 -30th capped the competition with a celebration at Space Center Houston, an education and entertainment facility next to the NASA Johnson Space Center.

On Thursday, the 29th, teams were invited to give presentations to the other teams, the NASA people who organized the challenge, and others. I used the opportunity to speak about my approach to the competition but also to raise the question of how an amateur roboticist, like myself, can make a meaningful contribution to robotics. 
Two ways are through competitions like this and by contributing software to the Robot Operating System (ROS). There aren't always competitions …

Sensor - Accelerometer & Magnetics

Just as I was finishing my first look at the accelerometer and magnetic field sensors a couple of threads cropped up on the Android Developer's group:

http://groups.google.com/group/android-developers/browse_frm/thread/1b42c48ce47cb1c9/720c6f4f8a40fc67#720c6f4f8a40fc67

http://groups.google.com/group/android-developers/browse_frm/thread/2e14272d72b7ab4f#

I had the basic code working so dug a little deeper into the rotation routines and the timing. I posted responses on the threads but want here to dig into the details more.

First some observations applicable to my G1:

The sensors report approximetly every 20, 40 and 220 msec for FAST, GAME, and NORMAL.
A sample may be missed for a specific sensor but usually one of them will be generated - but sometimes all can be missed.
The magnetic field sensor is most reliable with only a few drops. The other sensors are dropped considerably more often.

A caveat in all this is the way I setup the sensor handling may make a difference. I have a singl…