Skip to main content

Thinking About the Challenge - Hardware

Continuing my summary of thought over the last few weeks, I'll consider the hardware platform. This is not the final platform for the challenge. There are two major issues that need to be settled:

  1. Swarm or singleton,
  2. Picker and, related, storage of samples on the robot. 

Despite those uncertainties I need an outdoor capable platform to start work on the software tasks discussed in the previous article. One of the interesting ones I'd like to accomplish is proceeding to a potential sample. Keeping the vision processing on the sample while driving the robot is, hopefully, non-trivial but requires a lot of detail chasing. The work on the vision processing should help my understanding of how to locate samples.

The requirements for the robot are:

  • Capable of driving in a park type setting, e.g. no major rocky areas, some obstacles like trees and benches.
  • Large enough to carry:
    • One or two cameras, possibly on a 1-2 meter tall mast,
    • A PC class system with Wifi,
    • A prototype picker (thinking ahead a bit.),
    • Sensors for orientation and obstacle avoidance.
  • Drive at 2 meter / second since that is a possible speed during the challenge.
The robot may not need to carry all of the items listed above at the same time since some are only needed for specific experiments. For example, only a single camera may be needed when used to guide the picker toward acquiring a sample. 

I've gone through various vendors and reached a tentative conclusion on what to get. I rejected the simple 4 wheel platforms mounted on a solid box chassis. Most are a little smaller that I liked and while they do well for scampering around a yard I have my doubts about them in an environment with tree roots. Specifically, I don't think they will be sufficiently stable for testing when working with the cameras. Ground clearance might also be a problem.

I considered a tracked platform such as the Lynxmotion Tri-Track because it is so neat but it suffers from the same problem as the square platforms. 

The platforms I mention on the hardware technology page are very appealing but just cost to much for a platform that is only for experimentation.
Wild Thumper 6WD

I am strongly inclined toward the Dagu Wild Thumper 6WD (wheel drive) available from many shops - Robot Shop, Pololu, and SparkFun - to name a few. One reason for naming all of them is the documentation on the platform is different on each site. By checking all of them I got a better idea of the capabilities. 

The Thumper is a good size (16.5" x 12" x 5") without being gigantic, i.e. it fits on a workbench and can be handled by one person. The suspension and ground clearance (2.5") look good. The carrying capability is 11 lbs so it should handle the devices listed above. Its speed in the 1:34.1 gearing is 7 km, which is around 2 m/s. That is probably unloaded but close enough it will give me a feel for the problems of controlling a robot at that speed. 

After considering it, I started wondering if it wouldn't make a good platform for a swarm using it and maybe  its little brother 4WD version in combination. Since it weighs 6 lbs and can carry 11 lbs for a total of 17 lbs, there could be 10 of them in the swarm and still meet the total weight limit. Not that I can imagine setting ten of them loose for the challenge. The organizers would probably shoot me for requiring the ten judges to keep an eye on each robot. 

Popular posts from this blog

Cold Turkey on Linux

I bit the bullet a few weeks ago with Linux. I was getting ready to go to WPI for the SRR competition and decided to go cold turkey on my laptop. I put in a SSD and loaded Zorin Linux. It us recommended as a substitute for Win XP. One reason I liked it is the rolling upgrades instead of the Ubuntu staged upgrades.

There was still frustration. The WiFi did not work so I used the software updater to install the drivers it found from Broadcom. The OS would not boot after that. I reinstalled just before leaving and took the memory stick with the Zorin Live distro with me figuring I could always reload from it. I was impressed by the quickness of the installation. That encouraged me since if I messed up the laptop I could always quickly reinstall. I also had my iPad so accessing email, FB, and Twitter (I did a lot of tweeting with photos) were always available. 
I kept busy so it was not until Friday night up in VT to visit my sister that I had time to do much with the laptop. I cannot reca…

Sensor - Accelerometer & Magnetics

Just as I was finishing my first look at the accelerometer and magnetic field sensors a couple of threads cropped up on the Android Developer's group:

I had the basic code working so dug a little deeper into the rotation routines and the timing. I posted responses on the threads but want here to dig into the details more.

First some observations applicable to my G1:

The sensors report approximetly every 20, 40 and 220 msec for FAST, GAME, and NORMAL.
A sample may be missed for a specific sensor but usually one of them will be generated - but sometimes all can be missed.
The magnetic field sensor is most reliable with only a few drops. The other sensors are dropped considerably more often.

A caveat in all this is the way I setup the sensor handling may make a difference. I have a singl…

The Autonomous Roboticist

Since September 2016 I've been competing in the NASA Space Robotics Centennial Challenge (SRC). The challenge had a qualifying period and the final competition. I was one of the twenty teams from an international pool who qualified for the final competition. In mid-June the competitors ran their entries on a simulation in the cloud. The last few days, June 28 -30th capped the competition with a celebration at Space Center Houston, an education and entertainment facility next to the NASA Johnson Space Center.

On Thursday, the 29th, teams were invited to give presentations to the other teams, the NASA people who organized the challenge, and others. I used the opportunity to speak about my approach to the competition but also to raise the question of how an amateur roboticist, like myself, can make a meaningful contribution to robotics. 
Two ways are through competitions like this and by contributing software to the Robot Operating System (ROS). There aren't always competitions …