I worked with this IMU for the 2013 SRR but could not get the results needed so I put it aside. Since the first of the year and getting more serious about the 2014 SRR, I began working with it more.
As I did last year, I began working with code I found that would fuse the accelerometer and gyroscope data into a single reading of the global pose of the robot. The results never came out correct. The main problem was the reading for bearing, primarily based on the gyroscope data, was inaccurate. I setup a servo to rotate the IMU through 90 degrees (or a fairly close approximation) but the results usually were less, somewhere in the mid-80 degree range.
After fussing with the code I decided to try a really basic test. First, some background information.
A gyroscope of this nature reports the angular change during a period of time. Specifically, this IMU reports degrees / second and the amount of time between readings. Multiplying the reading by the amount of time tells you the actual rotational movement for that period. Integrating those results provides the current angular position of the IMU. Thus:
\[
\large \theta_{t} = \sum \omega_{t}dt \\
\theta_{t} \text{ is angular movement at time } t \]
The test is simple. Setup the servo to rotate 90 degrees with the IMU flat. The z axis, up and down, of the gyro should have a rotation of 90 degrees following the equation above.