Skip to main content

Android Activity Analysis

I have been looking at the details of the life cycle of an Android Activity. There are many web sites that discuss this and many examples. But none of the example addressed all the onXXX() methods of Activity. I also found problems with some of the examples. In one case, the GUI update thread could be left running after the Activity supposedly was stopped.

I was trying to determine when the GUI update thread should be created, stopped, paused, etc that initiated this effort. I have a game underway (doesn't everyone?) and figuring out all the Activity infrastructure was giving me fits. Each example did it in a different manner and while there may be no one correct manner most of them seemed a little off. Usually they seemed to omit some of the steps needed to pause, stop, or destroy everything properly.

A number of discussions presented the life cycle as a state machine, as an alternative to the Google flow chart (or here). [I don't mean to single out Eric Burke of StuffThatHappens by using his chart to illustrate my point. He has good Android material on his site.] Like the examples, they didn't seem as well thought-out as possible. For example, notice in Eric's state chart how many places onResume() appears. That indicates to me that the representation of the state machine is needs more work.

I offer the chart below as a simpler representation which eliminates the redundant calls to onResume() and other routines. This diagram is simplified by the introduction of the Pause state reached by onStart() and onPause(). There may be another state after onCreate() and onRestart() are called but my work so far does not show it as important.


From Mystic Lake Software

The file accompaning this page, TemplateSurfaceView.zip, contains a skeleton application for an Android Activity using a SurfaceView as the drawing surface. The application doesn't do anything except report current state to LogCat.

In the TemplateSurvaceView (TSV), the Activity onXXX() routines are mimicked with corresponding doXXX() methods in the TSV class.

doStart() - create thread
doPause - pause thread
doResume - resume thread
doStop() - kill thread

It becomes clear that the onXXX() routines are nicely symmetrical with each pair being able to setup and tear down the parts needed for the application. The one misleading, oddball is onRestart(). At first thought it might somehow pair with doStart(), but this is not the case. The doStart() method is paired with doStop(). The doRestart90 appears to be available to duplicate some of the work done by onCreate() that may have been undone during onStop().

Once I had the diagram figured out the requirements became apparent and the TSV code was generally straightforward. Not so obvious was how to handle the Thread since many of the obvious Thread methods that would be used are deprecated due to deadlock problems. I won't go into the details here because this is a Java issue, not specific to Android. But read the article Why Are Thread.stop, Thread.suspend, Thread.resume and Runtime.runFinalizersOnExit Deprecated? for more information.

Popular posts from this blog

Cold Turkey on Linux

I bit the bullet a few weeks ago with Linux. I was getting ready to go to WPI for the SRR competition and decided to go cold turkey on my laptop. I put in a SSD and loaded Zorin Linux. It us recommended as a substitute for Win XP. One reason I liked it is the rolling upgrades instead of the Ubuntu staged upgrades.

There was still frustration. The WiFi did not work so I used the software updater to install the drivers it found from Broadcom. The OS would not boot after that. I reinstalled just before leaving and took the memory stick with the Zorin Live distro with me figuring I could always reload from it. I was impressed by the quickness of the installation. That encouraged me since if I messed up the laptop I could always quickly reinstall. I also had my iPad so accessing email, FB, and Twitter (I did a lot of tweeting with photos) were always available. 
I kept busy so it was not until Friday night up in VT to visit my sister that I had time to do much with the laptop. I cannot reca…

The Autonomous Roboticist

Since September 2016 I've been competing in the NASA Space Robotics Centennial Challenge (SRC). The challenge had a qualifying period and the final competition. I was one of the twenty teams from an international pool who qualified for the final competition. In mid-June the competitors ran their entries on a simulation in the cloud. The last few days, June 28 -30th capped the competition with a celebration at Space Center Houston, an education and entertainment facility next to the NASA Johnson Space Center.

On Thursday, the 29th, teams were invited to give presentations to the other teams, the NASA people who organized the challenge, and others. I used the opportunity to speak about my approach to the competition but also to raise the question of how an amateur roboticist, like myself, can make a meaningful contribution to robotics. 
Two ways are through competitions like this and by contributing software to the Robot Operating System (ROS). There aren't always competitions …

Sensor - Accelerometer & Magnetics

Just as I was finishing my first look at the accelerometer and magnetic field sensors a couple of threads cropped up on the Android Developer's group:

http://groups.google.com/group/android-developers/browse_frm/thread/1b42c48ce47cb1c9/720c6f4f8a40fc67#720c6f4f8a40fc67

http://groups.google.com/group/android-developers/browse_frm/thread/2e14272d72b7ab4f#

I had the basic code working so dug a little deeper into the rotation routines and the timing. I posted responses on the threads but want here to dig into the details more.

First some observations applicable to my G1:

The sensors report approximetly every 20, 40 and 220 msec for FAST, GAME, and NORMAL.
A sample may be missed for a specific sensor but usually one of them will be generated - but sometimes all can be missed.
The magnetic field sensor is most reliable with only a few drops. The other sensors are dropped considerably more often.

A caveat in all this is the way I setup the sensor handling may make a difference. I have a singl…